Local Policy Search in a Convex Space and Conservative Policy Iteration as Boosted Policy Search

نویسندگان

  • Bruno Scherrer
  • Matthieu Geist
چکیده

Local Policy Search is a popular reinforcement learning approach for handling large state spaces. Formally, it searches locally in a parameterized policy space in order to maximize the associated value function averaged over some predefined distribution. The best one can hope in general from such an approach is to get a local optimum of this criterion. The first contribution of this article is the following surprising result: if the policy space is convex, any (approximate) local optimum enjoys a global performance guarantee. Unfortunately, the convexity assumption is strong: it is not satisfied by commonly used parameterizations and designing a parameterization that induces this property seems hard. A natural solution to alleviate this issue consists in deriving an algorithm that solves the local policy search problem using a boosting approach (constrained to the convex hull of the policy space). The resulting algorithm turns out to be a slight generalization of conservative policy iteration; thus, our second contribution is to highlight an original connection between local policy search and approximate dynamic programming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guided Policy Search as Approximate Mirror Descent

Guided policy search algorithms can be used to optimize complex nonlinear policies, such as deep neural networks, without directly computing policy gradients in the high-dimensional parameter space. Instead, these methods use supervised learning to train the policy to mimic a “teacher” algorithm, such as a trajectory optimizer or a trajectory-centric reinforcement learning method. Guided policy...

متن کامل

Guided Policy Search via Approximate Mirror Descent

Guided policy search algorithms can be used to optimize complex nonlinear policies, such as deep neural networks, without directly computing policy gradients in the high-dimensional parameter space. Instead, these methods use supervised learning to train the policy to mimic a “teacher” algorithm, such as a trajectory optimizer or a trajectory-centric reinforcement learning method. Guided policy...

متن کامل

Policy Search: Any Local Optimum Enjoys a Global Performance Guarantee

Local Policy Search is a popular reinforcement learning approach for handling large state spaces. Formally, it searches locally in a parameterized policy space in order to maximize the associated value function averaged over some predefined distribution. It is probably commonly believed that the best one can hope in general from such an approach is to get a local optimum of this criterion. In t...

متن کامل

Solving POMDPs by Searching in Policy Space

Most algorithms for solving POMDPs itera­ tively improve a value function that implic­ itly represents a policy and are said to search in value function space. This paper presents an approach to solving POMDPs that repre­ sents a policy explicitly as a finite-state con­ troller and iteratively improves the controller by search in policy space. Two related al­ gorithms illustrate this approach. ...

متن کامل

Bounded Finite State Controllers

We describe a new approximation algorithm for solving partially observable MDPs. Our bounded policy iteration approach searches through the space of bounded-size, stochastic finite state controllers, combining several advantages of gradient ascent (efficiency, search through restricted controller space) and policy iteration (less vulnerability to local optima).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014